Choose the correct answer in each of the following:

Section 1.4+1.5:

1. The following figure shows the graph of the function f(x) =

- (a) 5^x
- **(b)** -5^x
- (c) $\left(\frac{1}{5}\right)^x$
- (d) $-\left(\frac{1}{5}\right)^x$
- **2**. The domain of the function $f(x) = \pi^x 5$ is
- (a) $(0,\infty)$
- **(b)** $[5,\infty)$
- (c) $(-\infty,\infty)$
- (d) $(-\infty, 5)$
- **3**. The function $f(x) = \frac{x+2}{x}$ is one-to-one function.
- (a) True
- (b) False
- **4.** If the function $f(x) = x^5 + 1$, then $f^{-1}(f(x)) = x^5 + 1$
- (a) $\frac{-x}{x^5+1}$

(b)
$$\frac{-1}{x^5 - 1}$$

(c) $\frac{-x^5 + 1}{x}$
(d) x

(c)
$$\frac{-x^5+1}{x}$$

5. The inverse function of $f(x) = \sqrt{\frac{6x}{2x+1}}$ is

(a)
$$f^{-1}(x) = \frac{x^2}{2x^2 - 6}$$

(b)
$$f^{-1}(x) = \frac{1}{6}(1+x^{-2})$$

(c)
$$f^{-1}(x) = \frac{1}{2}(1 + 6x^{-2})$$

(d)
$$f^{-1}(x) = \frac{x^2}{6 - 2x^2}$$

6. $\log_4 20 - \log_4 5 =$

7. If $\log_2(x+3) = 3$ then x =

- **(a)** 5
- **(b)** 11
- **(c)** 1
- **(d)** 8

8. The following figure represents a graph of a (function and it's inverse) at the same coordinate axis

- (a) True
- (b) False

answers: 1-c, 2-c, 3-a, 4-d, 5-d, 6-c, 7-a,8-b.